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Free-flight and wind-tunnel measurements by previous investigators of the flat-plate 
autorotation phenomenon have been analysed. The variation of the autorotation 
characteristics with changes in the Reynolds number and the aspect ratio, thickness 
ratio and moment of inertia of the flat plate have been correlated. The interpretation 
of the role of the Reynolds number made in a previous investigation is shown to be 
incorrect. The tip-speed ratio, for the ranges of the dimensionless parameters investi- 
gated, is shown to be a function of only the plate aspect ratio, thickness ratio, and also 
the moment of inertia if the latter is sufficiently small. The lift and drag coefficients, 
and therefore the free-flight glide angle, are shown to be functions of the tip-speed 
ratio, the aspect ratio and the Reynolds numbers based on the chord and plate thick- 
ness. 

1. The Magnus rotor: introduction 
The Magnus rotor as defined here is a cylinder of arbitrary cross-section which 

revolves about an axis perpendicular to the cross-section and moves through air or 
another fluid in a direction perpendicular to this axis (or is stationed in a wind tunnel 
with its axis perpendicular to the stream). Owing to the circulation about the cylinder 
caused by rotation and interaction with the wind stream, a lift force is generated. Some 
rotors, such as the circular cylinder, must be rotated by an external power source to 
generate circulation. Others, for example those with a flat-plate cross-section, will 
autorotate; that  is, if once set in motion about an axis of revolution, the rotor will 
continue to rotate and will draw the necessary energy for doing so from the relative 
wind. Autorotational motion can take place either in free flight or when a plate is 
pinned to rotate about a given axis in a wind tunnel. A flat plate pinned to rotate 
about its midchord must be given an initial rotational impulse to autorotate, but there 
are other cross-sections, of course, which will rotate spontaneously once the wind 
tunnel has been started. 

The concept of the Magnus rotor is not new. Gustav Magnus illustrated experi- 
mentally the existence of the lifting force on a rotating circular cylinder in 1853. In  
1854, James Clerk Maxwell attempted to explain the phenomenon of an autorotating 
card falling through the air. His explanation was incomplete, because it does not 
account for the autorotation of a wind-tunnel model mounted on a bearing support. 

Several applications of the Magnus rotor as lift-generating devices of both the 
powered and the autorotating type have been investigated. The most famous of these 
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applications is probably the Flettner rotor ship (Ackeret 1925) of the 1920’s, which 
employed two powered vertical circular cylinders in lieu of sails. The interest generated 
by the rotor ship sparked off other applications to boats and windmills. The powered 
circular rotor was also applied in the design of a boat propeller (Ackeret 1925). One 
windmill design consisted at least partially of the autorotating Savonius section 
(Klemin 1925; Savonius 1926; Willhoft 1927), which was also applied to small boats. 
The autorotating section eliminated the need for external power for the boat 
application. The Savonius rotor is currently used to provide the starting torque for 
modern wind energy devices (Blackwell 1974). 

The lift and drag characteristics of powered rotors as determined by wind-tunnel 
testing is reported by Ackeret (1925)) Reid (1924), Thom (1934), Swanson (1961) and 
Crabtree (1960). These tests show that the lift generated on a rotating circular cylinder 
is a maximum of only about half that predicted from potential theory, i.e. L‘ = PUP,  
where r = 2na2w is the rotor circulation. More recently, transonic and supersonic 
tests were reported by Platou (1961). At these speeds, the Magnus force on the circular 
cylinder is much less than a t  subsonic speeds. This failure of the rotors to approach the 
lift predicted by potential theory caused some disappointment in the performance of 
the Flettner rotor ships. It also gave rise to criticism of those who espoused potential 
theory as an explanation of the Magnus effect (Ahlborn 1930; Regan 1966; Buford 
1954). Ahlborn (1930) gives an entertaining criticism of the proponents of potential 
theory with a rebuttal by Hoff in the same paper. At low angles of attack of a spinning 
body of revolution, the Magnus force is much less than that predicted by potential 
theory since it does not have time to develop fully (Uselton 1966). Magnus-force 
prediction procedures based on analysis of the viscous boundary layer are reported by 
Kelly (19541, Kelly & Thacker (1956) and Power & Iversen (1973). A correlation of 
Magnus forces on cylindersof high fineness ratio at small anglesof attack was developed 
by Iversen (1 973). A recent interesting review of the Magnus effect on circular cylinders 
has been written by Jacobson (1973). 

Several interesting applications of powered and autorotating rotors have been 
attempted for improvement of wing lift. The rotor aeroplane (Klemin 1932)) in which 
the usual wing was replaced by powered circular cylinders, was doomed to failure from 
the start. Although a lift coefficient as high as 15 can be generated, a high drag coef- 
ficient of 5 results a t  the same time. Also, of course, power failure is immediately 
disastrous. The placement of a rotor somewhere in conjunction with an ordinary wing, 
however, can result in improvement in liftldrag characteristics. Among the earlier 
investigators, Reid (1924)) in the United States, and Wolff & Konig (1926), in Ger- 
many, investigated the aerodynamic characteristics of airfoils with circular cylinders 
fitted into the leading edge. Much more recently, Alvarez-Calderon & Arnold (1961) 
investigated the high lift properties of wing-flap combinations with a powered 
circular cylinder fitted into the leading edge of the flap. The autorotating section has 
also been suggested for improvement of high lift characteristics (Crabtree 1960; 
Brunk 1965). Crabtree’s configuration consists of a complete wing section with a small 
symmetrical rotating flap located beneath the trailing edge of the wing. The maximum 
lift coefficient is increased by well over a factor of 2, but the drag at  maximum lift is 
increased by almost a factor of 5. Among many free-flight applications, the auto- 
rotating wing has been suggested as a radioactive-material containment vessel for 
re-entry from an earth orbit (Vorreiter & Tate 1973). 
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FIGURE 1 .  Autorotor cross-sections. 

FIGURE 2. Sketch from smoke-tunnel photograph of an autorotating flat plate (from Yelmgren 
1966). Note large vortex downstream of the retreating edge. 

I n  this paper, the autorotation phenomenon of the flat-plate wing is analysed by 
considering free-flight and wind-tunnel data gathered by previous investigators. The 
data are analysed by correlating the tip-speed ratio and lift and drag coefficients with 
functions of the aspect ratio, thickness ratio, moment-of-inertia parameter and thick- 
ness and chord Reynolds numbers. 

2. Theory of wing autorotation 
Various types of autorotating cross-sections are shown in figure 1 .  It may be fairly 

obvious why the five asymmetric sections autorotate, at least those with driving 
vanes. (Experiments by various investigators on autorotors of asymmetric section are 
reported in Iversen 1969.) The three symmetric sections, the circular arc, flat plate 
and double wedge, however, require closer examination. As mentioned previously, 
Maxwell (1854) was the first to try to explain the flat-plate autorotation phenomenon. 
He hypothesized that the autorotation was caused by a decrease in lift force due to 
continuing deceleration of the rotor as it descends through the air. His explanation, 
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FIGURE 3. Rotor tip-speed ws. free-stream speed; effect of bearing friction. Wind-tunnel data 
from Glaser & Northup; aspect ratio = 0.5, thickness ratio = 0.0313. 0, normal bearing friction; 
0, high bearing friction. 

seemingly valid for the falling rotor, does not explain autorotation in a wind tunnel 
and so is incomplete even for the falling rotor. 

Riabouchinsky (1 935) based his explanation on a hypothesized change in the shape of 
the wake as the rotor revolves. He assumed that the wake is small when the retreating 
side of the rotor is at  an angle of less than in to the free stream, and that the wake 
is large when the advancing side is a t  an angle of less than in to the free stream. Thus 
the lift generated is larger in the former case, and the average moment about the axis 
of rotation would be in the direction of rotation. 

Bustamante & Stone (1969), Iversen (1969) and Smith (1970, 1971) have suggested 
that autorotation of wings of symmetrical cross-section is due to a large vortex shed 
from the retreating face of the wing cross-section. It has been shown theoretically 
(Iversen 1969) that such a vortex creates an aerodynamic moment tending to continue 
autorotation. A smoke-tunnel photograph of streak lines taken by Yelmgren (1966) is 
sketched in figure 2. A large vortex shed from the retreating (downstream) face of the 
rotor is shown, while no similar vortex is visible from the advancing face. 

3. Tip-speed ratio: effect of bearing friction 
Typical examples of the tip speed V as a function of the free-stream test-section 

speed U for a flat-plate rotor are plotted in figure 3. The friction of the bearings 
obviously affects these data as the straight lines plotted through the data do not pass 
through the origin. The effect of the bearing friction can be found in the following 
approximate manner. It is assumed that the average aerodynamic moment about the 
centre of rotation in the direction of rotation is 

MA = k, U 2  - +kg U ~ C ,  (1) 
where c is the wing chord and 19 the rotor angle of attack. The first term is a driving 
moment and the second represents aerodynamic damping. The dot indicates the 
derivative with respect to time. The bearing friction is assumed to be 

M, = - k,exp ( -  k,6) - k, 8 - k, U. (2) 
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FIGURE 4. (a) Rotor tip-speed ratio and ( b )  tip-speed vs. free-stream speed. Plotting V / U  
(or the Strouhal number) us. U (or the Reynolds number) does not enable one to calculate the 
large U tip-speed ratio as does plotting V vs. U .  Wind-tunnel data, double wedge, aspect 
ratio = 0-5, aluminium rotor. 

The first term provides the static retarding torque, the second is the retarding torque 
due to rotation and the third increases with speed owing to the increased force on the 
bearing. The k's are all positive constants. Thus the equation of motion is 

(3) 
where I is the moment of inertia of the rotor. At equilibrium rotor speed (8 = 0) 

k, U2  - +k, U8c - k, exp ( - k,  8) - k, 8- k, U = I d ,  

(4) 
k ,  U3- k,exp ( -  k 4 8 )  - k, U 

Qk, Uc + k ,  
8 =  

At large values of U and therefore 8, (4) can be approximated by 

Thus the effect of bearing friction can be largely ignored, provided that k, and k, are 
small enough, by taking for the value of V / U  the slope of the experimental curve a t  a 
higher value of the velocity. 
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FIQURE 5. Wind-tunnel data from Smith (1970) replotted in order to obtain curve slopes ( V / U  
for large 77). A, S = 0.147, V / U  = 0.461; 0 ,  S = 0.188, V / U  = 0.690; A, S = 0.188, 
V / U  = 0.590; 0, S = 0.200, V / U  = 0.628; 0, S = 0-273, V / U  = 0.857. 

The effect of bearing friction has been misinterpreted by Smith (1970, 1971). He 
assumed that the tip-speed ratio V / U  (or Strouhal number V l n U )  measured experi- 
mentally in a wind tunnel is a function of the Reynolds number, and presented data in 
which the tip-speed ratio gradually increases with increasing Reynolds number. This 
increase in the tip-speed ratio (or Strouhal number), however, is due to bearing friction, 
not the Reynolds number. Figure 4 ( a )  reproduces data (Iversen 1969) for the tip- 
speed ratio V / U  vs. the free-stream speed U for a 0.5 aspect ratio rotor. A curve of 
Strouhal number vs. Reynolds number (as in Smith 1970, 1971) could be obtained by 
changing the vertical scale by a factor of 1/77 and the horizontal scale by a factor of 
c/v, where Y is the kinematic viscosity. The resulting curve shape strongly resembles 
Smith’s data. In figure 4 ( b )  the same data for the tip speed V are plotted us. the free- 
stream speed U .  The slope of the curve, as predicted by (5), is the expected free-flight 
autorotation value of V / U ,  which would be reached only in the limit of much larger 
U in figure 4 (a) .  Similarly, if Smith’s data are replotted, straight lines are also obtained 
in plots of V vs. U .  The tip-speed ratio V / U  is thus calculated as a single value instead 
of as a function of the Reynolds number. Five of his experiments are replotted in 
figure 5 (from figure 31, Smith 1970). The values of V / U  calculated from the slopes 
in figure 5 range from 0.46 to 0.86. In contrast, the maximum values of V / U  that he 
measured range from 0.42 to 0.66, the latter figure being 23 % less than the projected 
free-flight value of 0.86. The variation in tip-speed ratio with Reynolds number for his 
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range of Reynolds numbers should be small because the autorotating-wing phenom- 
enon is largely involved with time-dependent sharp-edged separation. Any functional 
relationship with the Reynolds number is likely to be masked by the effects of 
bearing friction. 

4. Tip-speed ratio: effect of aspect ratio 
Glaser & Northup (1971) carried out a systematic series of wind-tunnel tests to 

determine the tip-speed ratio of flat-plate autorotors for various aspect ratios, moments 
of inertia and thickness ratios. Figure 6 shows their data for tip-speed ratio v,s. aspect 
ratio for a constant thickness ratio r = t / c  (where t is the plate thickness) and a nearly 
constant value of the moment-of-inertia parameter K = I/pc4b.  

Also shown in figure 6 is the curve of an equation derived as follows. The static 
stability derivative Cm, about the half-chord line of an unswept wing can be written as 

where C,, is the lift-curve slope and h, is the distance of the aerodynamic centre from 
the leading edge divided by the chord. A good empirical expression for CLa for 
rectangular wings was given by Diederich (1951) as 

CL, = a,d/{a,/n+ &[I+ (ao/n-01)2Y}, (7) 

where a? = b/c  is the aspect ratio. With the two-dimensional lift-curve slope a, set 
equal to the thin-airfoil value of 2n, (7) becomes 

cLa/2n = d / [ 2  + (4 + d2)4]. (8) 
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FIGURE 7. Normalized tip-speed ratio 0s. thickness ratio. 
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An empirical expression for h, for rectangular wings was fitted to  data from a variety 
of sources: 

h, = 0 * 2 5 [ d / ( d  + 0*595)]076. (9) 

Thus the resulting expression for C,, (about the half-chord line) for rectangular wings 
a t  small angles of attack is 

On the premise that the aerodynamic overturning moment for small angles of attack 
might be a valid correlation parameter for the autorotating plate as well, (10) was 
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applied to the data shown in figure 6. An excellent fit is obtained by letting the tip- 
speed ratio be proportional to the parameter in (10) to the two-thirds power. Thus 
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FIGURE 9.  Tip-speed ratio vs. thickness ratio - aspect ratio function. Free-flight data from 
Dupleich; 0.8 < d < 6, 0.0074 < T < 0.167, 0.028 < K < 0.62. 

5. Tip-speed ratio: effect of thickness ratio 
A second series of experiments was undertaken by Glaser & Northup (1971) to 

determine the effect of the thickness ratio 7 = t / c  on the tip-speed ratio V /  U .  Thick- 
ness ratios 7 ranging from 0.0054 to 0.5 were tested. The effect of the aspect ratio can 
be eliminated by plotting the ratio ( V / U ) / f l ( d )  [as defined in (l l)]  us. thickness 
ratio 7 as in figure 7. The effect of a change in the moment-of-inertia parameter 
K ( =  I / p c 4 b )  is very small for values of K greater than one, so only data for these 
values of K are plotted (see Smith 1970 and below). Free-flight data from Bustamante 
& Stone (1  969) for much higher Reynolds numbers are also shown in figure 7.  A fairly 
good fit to the data is obtained with 

Normalizing V / U  b y f , ( d )  has the effect of emphasizing data scatter, so the data are 
replotted in figure 8 according to 

f 2 ( 7 )  = 0.329 In 7-1 - 0.0246 (In T - ~ ) ~ .  (12) 

V / U  = f 1 ( d ) f 2 ( 7 )  = (0.329In~-1 
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FIGURE 10. Stylized rotational torquo as a function of cyclic angle 0 used in numerical solution. 

I n  this case the data scatter appears to be smalI considering the ranges of the aspect 
ratio (0-25-4) and thickness ratio (0-0054-0-5) covered. Equation (13) should thus 
give fairly good predictions of the free-flight tip-speed ratio for K > 1. A similar plot is 
shown for Dupleich’s (1941) data in figure 9, also for a large range of aspect ratios and 
thickness ratios. There is more scatter in these data, which are all for free flight, than 
in figure S, but as shown later, this is due to the small values ( < 1 )  of the inertia par- 
ameter K .  Equation (13) still fits the data fairly well, however. 

6. Tip-speed ratio : effect of moment of inertia 

(mounted in a wind tunnel) and linear damping is 
The equation of motion for a flat-plate autorotor with one degree of freedom 

18 + D, 8 + iw,(e) = 0, (14) 

where Doe is the rotor damping torque. A stylized aerodynamic moment MA(@ which 
is not unlike Smith’sexperimental lift curves (Smith 1970, figure 12, or 1971, figure 6 ) t  
was devised for the purpose of illustrating the effect of the moment of inertia: 

MA(e)  = B[29sin(28+&)- 11. (15) 

This equation is shown for one half-cycle in figure 10. It provides a net average moment 
during the cycle tending to continue autorotation. The damping factor Do is assumed 
to be constant and would, of course, include the effect of bearing friction for wind- 
tunnel data. Incorporating (15) into a dimensionless version of (14) results in 

where 
d = (~/2U)d/dt,  C, = B/gpU2bC2, C,, = D0/$pUbc3, K = I/pc4b. (17) 

Equation (16) was first solved numerically with C, = 1, C, = 1 and initial values of 8 
and d8 of 0.1 and 0 for values of K from 1 to 100. The ratio C,/C, is the steady-state 
tip-speed ratio V / U  for large K .  After a period of time, the numerical solutions 

t It appears that the top and bottom ordinate legends should be interchanged on figure 6 of 
Smith (1971). 

I 2  F L M  92 
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FIGURE 11.  Tip-speed ratio 21s. moment af inertia parameter: numerical solution of 
d 2 s + ( C u / ~ )  dO+2(CB/K)  sin (20+&r) = C,/K, CB = 1, Cu = 1. 

approached a steady state (i.e. identical half-cycles). The resulting steady-state 
minimum , average and maximum speed ratios during the cycle are shown in figure 11,  
Obviously, for low values of K the tip-speed ratio varies greatly during the cycle. As K 
is decreased, a point is reached where the inertia of the rotor is not great enough to 
carry it through the retarding-moment portion of the cycle, and autorotation cannot 
be maintained. 

Experimental values of the minimum K for autorotation (K,) and curves similar to 
the average curve of figure 11 were obtained by Glaser & Northup (1971) and Smith 
(1970) and are illustrated in figure 12. The values of K ,  of somewhat less than 0.2 
(Glaser & Northup) and 0.06 (Smith) are, of course, dependent upon bearing friction. 
Smith's bearing friction is smaller, so he was able to obtain lower values of KM.  

Equation (16) was again solved numerically, the values of C, and C, being con- 
tinually adjusted in order to obtain a finite-difference solution which matched the 
LZ! = 5 data in figure 12. The results are shown in figure 13. The closeness of fit is 
reasonably good for the wind-tunnel case. The effect of variation of the moment of 
inertia, then, a t  least for the wind-tunnel results, is extremely rapid at and just above 
KM. However, the tip-speed ratio is within 80 yo of the large-K asymptotic limit for 
the experimental data for a value of K/KM = 1.15 and within 90 yo for K / K ,  = 1.8. 
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For practical purposes, the tip-speed ratio nears the large-K limit for comparatively 
small values of K ( > 1) .  

To compare the effect of moment of inertia for free-flight and wind-tunnel data, 
figure 14 was prepared. This figure illustrates the tip-speed ratio V / U  normalized by 
the thickness and aspect-ratio parameters, i.e. 
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FIGURE 14. Normalized tip-speed ratio vs. moment-of-inertia parameter. Free-flight and wind- 
tunnel data. ., free flight, Dupleich, &' = 0.8-6, t / c  = 0.003-0.167; A, freeflight, Bustamente & 
Stone, &' = 1.19, 2.67, t / c  = 0.026, 0.028; 0, wind tunnel, Glaser & Northup, d = 0.25-4, 
t / c  = 0.005-0.25. 
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FIGURE 15. Lift coefficient tip-speed ratio ws. aspect-ratio function. Free-flight data from 
Dupleich. 0, Ut /v  = 38-50, t / c  = 0.020; 0, U t / v  = 42-47, t / c  = 0.010; 0, U t / v  = 86-1.04, 
t / c  = 0.009. 
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Again, this method of plotting emphasizes data scatter, but the difference between the 
wind-tunnel and free-flight cases (i.e. the effect of bearing friction) is still well illus- 
trated. First of all, in Dupleich’s (1941) free-flight data there appears to be an over- 
shoot in the tip-speed ratio for values of K from 0.08 to 0.2 which is not observed in 
either the wind-tunnel data or the numerical solution of (16). Second, the minimum K 
for autorotation (K,) is significantly lower ( K ,  < 0.06; Dupleich discussed the 
existence of a minimum K but did not give a value). Third, Smith’s value of K ,  (0.06) 
is significantly lower than Glaser & Northup’s (0.24) because of lower bearing friction 
but is still apparently higher than Dupleich’s free-flight value. Fourth, in the limit of 
large moment of inertia the normalized tip-speed ratio is the same (within the data 
scatter) for the wind-tunnel as it is for the free-flight case, verifying the use of the slope 
of the V us. U curves as the correct value of the tip-speed ratio. Thus, for large moment 
of inertia, (13) can be used to predict tip-speed ratios in free flight for flat-plate auto- 
rotating wings. Obviously, a different aerodynamic forcing moment function would be 
needed in (16) in order to reproduce Dupleich’s data for small K.  A normalized tip- 
speed ratio involving the thickness and aspect ratios may not be sufficiently compli- 
cated for small moment of inertia; this may account for some of the data scatter. 
Analysis of Dupleich’s data seems to show no effect of the Reynolds number on the 
tip-speed ratio, although the lift and drag coefficients are affected as shown below. 

7. Flat-plate autorotation: lift and drag 
Lift and drag coefficients can be calculated from Dupleich’s free-flight data since the 

flight-path glide angle and speed and the plate weights were recorded. The resulting 
lift coefficients for three thickness ratios are shown in figure 15. It should be noted that 
the lift and drag coefficients calculated were based on the standard sea-level air 
density since Dupleich did not list air-density information. The resulting coefficients 
are thus probably slightly low. The lift on a rotating wing can be expressed as 

L = p U r b ,  (19) 

where I? is an average value of the circulation along the span. The circulation r should 
be proportional to product of the tip speed and the chord: 

r = K ~ v ~ ,  (20) 

(21) 

where the coefficient K is probably a strong function of the aspect ratio. Thus the lift 
coefficient is 

The ratio C,( V /  U)-l  is plotted as a function of d [from (8) for the lift-curve slope] in 
figure 15 and turns out to be proportional to the lift-curve slope aspect ratio function 
to the one-third power. It appears from this figure that the coefficient of proportion- 
ality is a function of the thickness Reynolds number Ut/v. (Other functional relation- 
ships were attempted but did not work.) Thus the ratio 

(7, = 2n(V/U)f(d) .  

is plotted in figure 16, where the correlation is seen to be remarkably good. To illus- 
trate the degree of correlation, the lift coefficient is plotted us. the adjusted tip-speed 
ratio in figure 17 : c, = ( V /  U )  {d/P + (4 + d2)*1)Y*( UtlV), (22) 
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FIGURE 16. Normalized lift coefficient us. thickness Reynolds number. Free-flight data, from 
Dupleich, 0.8 < .d < 6, 0.0074 < 7 < 0.167. 

where the function f4( U t / v )  is the ordinate of the solid line in figure 16. The correlation 
is remarkably good, illustrating the care with which Dupleich performed his experi- 
ments. The lift coefficient is not sensibly a function of the chordwise Reynolds number, 
but is a function of the thickness Reynolds number, indicating that the circulation is 
affected by the plate thickness in such a way that the lift decreases with an increase in 
thickness. There appear to be two distinct Reynolds number regimes in figure 16, one 
for Reynolds numbers less than 100 and another for Reynolds numbers greater than 
500, in which the lift decreases with increasing Reynolds number. From 100 to 500, 
the normalized lift coefficient is nearly constant. Some kind of transition is apparently 
taking place. The drag coefficient, as shown below, is a function of both the chordwise 
and the thickness Reynolds number, and a more distinct transition occurs in the same 
thickness Reynolds number regions. 

AS has been demonstrated before (Iversen 1969), the drag coefficient CD is inde- 
pendent of the aspect ratio and therefore of the tip-speed ratio, as illustrated by 
Dupleich's data for three thickness rat,ios shown in figure 18. It is, however, a function 
of the chord Reynolds number as shown in figure 19. Three separate curves appear when 
the drag-coefficient data are plotted as a function of the chord Reynolds number, 
corresponding to different values of the thickness Reynolds number. For a constant 
thickness Reynolds number, the drag coefficient increases with chord Reynolds 
number, but the increase is not as large for larger thickness Reynolds numbers. For 
average thickness Reynolds numbers of 44 (38-47) and 95 (91-104), CD is proportional 
to ( U C / V ) O . ~ ~ ~ ,  but for an average thickness Reynolds number of 7 1 1  (693-725), C, is 
proportional to (Uc/v)@12. 

The ratios CD( Uc/v)-o'225 for 38 < Ut/u < 104 and CD( Uc/v)-O'12 for 

119 < U t / v  < 1930 

are shown in figure 20. Clearly, the drag coefficient decreases with an increase in thick- 
ness Reynolds number, a very interesting result. Again, the variation with Reynolds 
number is more rapid for the lower Reynolds numbers and, as for the lift coefficient, 
there must be a significant change in the flow characteristics as the thickness Reynolds 
number is increased through 100. 
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Adjusted tip-speed ratio, VU-'1.d/[2 + (4  + dz)flIf f 4 ( U t / v )  

FIGURE 17. Lift cocfficirnt as. adjusted tip-speed ratio. Free-flight data from Dupleich, 
0.8 G d < 6, 0.0074 G 7 Q 0.67, 38 f Utlv f 1930. 
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FIGURE 18. Drag coefficient 219. aspect ratio. Free-flight data from Dupleich. 

Ut/v t/c uc/v 
0 38-45 0.020 3880-4540 
0 42-47 0.010 2150-2380 
0 86-104 0.009 
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103 I 0 4  

Chord Reynolds Number, Uc/v 
10s 

FIQURE 19. Drag coefficient ws. chord Reynolds number with thickness Reynolds number as a 
parameter. Free-flight data from Dupleich. Ut/v:  0, 38-47; 0, 91-104; A, 119-1930; 0, 
693-725. 

30 

FIQURE 20. Normalized drag coefficient ws. thickness Reynolds number. Free-flight data from 
Dupleich, Uc/v :  0, 1470-11250; 0, 5280-57750. 

The drag coefficient is plotted us. a combined Reynolds number function in figure 
21. For thickness Reynolds numbers 38 < U t / v  < 104, 

CD N 0.78( U C / V ) O ' ~ ~ ~ (  U~/V)-O'~'  = 0.77 f5( UC/V,  Ut/V),  

C, N 0*77( U C / V ) O ' ~ ~ (  U ~ / V ) - ~ " ~  = 0*77f,( U C / V ,  U t / v ) .  

( 2 3 4  

and for thickness Reynolds numbers 119 6 U t / v  < 1930, 

(23b) 

Free-flight data from Bustamante & Stone (1969) for an autorotor of aspect ratio 1.19 
are also plotted in figure 21 according to ( 2 3 b ) .  Their Reynolds numbers are about 20 
times the largest values from Dupleich's data, thus (23b) is not likely to be applicable. 
As a result, the two data points lie somewhat above the curve which fits Dupleich's 
data. The lift-drag ratio from Dupleich's results is illustrated in figure 22, plotted v8. 

the ratio of the right sides of (22) and (23). Again the agreement is good. 
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0 0.4 0.8 1.2 1 *6 2 
Reynolds number function, fs UC Ut 

( Y d  

FIGURE 21. Drag coefficient 2)s. Reynolds number function. Free-flight data. 

uc/v ut/v F 
Dupleich 0 1470-11250 38-104 l . O l ( U c / ~ ) ~ ' ~ ~ ~ / (  U t / ~ ) 0 ' 3 7  

Bustsmente & Stone A 1 .1  X lo6 2.8 x 1W ( U C / V ) ~ " ~ / ( U ~ / V ) ~ " ~  
0 5280-57750 119-1930 ( UC/V)O"~/( Ut/v)O"' 

8. Conclusions 
To the author's knowledge, there have been only two .comprehensive systematic 

series of experiments concerning the autorotation of flat-plate wings: that  in free 
flight by Dupleich (1941) and that in a wind tunnel by Glaser & Northup (1971). The 
wind-tunnel experiments of Smith (1970, 1971), while carried out very carefully and 
with a minimum amount of bearing friction, were concerned primarily with wings 
with various types of tip plates instead of a consistent family of shapes such as flat-plate 
wings of varying thickness and aspect ratio. In  Dupleich's case, correlation of the data 
was done only in terms of dimensional quantities, which makes interpretation of his 
figures very difficult. Northup & Glaser did present their results in a systematic fashion 
in terms of moment-of-inertia and thickness parameters but did not make a thorough 
comparison of their results with Dupleich's free-flight data. Smith's interpretation of 
the wind-tunnel results in terms of Strouhal number 0s. Reynolds number has been 
shown in this paper to  be incorrect and to  predict values of the tip-speed ratio V / U  
which are too small. The fact that  the tip-speed ratio is relatively independent of the 
Reynolds number, contrary to Smith's conclusions, is shown by figure 14, where the 
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u c / v  < 57750. F o r f , ( U t / v ) ,  see figure 16. F o r f 6 ( U t / v ,  U c l v ) ,  see equation ( 2 3 ) .  

free-flight data of Bustamante & Stone compare well with wind-tunnel data and 
Dupleich's free-flight data for much smaller Reynolds numbers. 

Tip-speed ratio data from both a wind tunnel and free flight have been shown to 
correlate well and in the same fashion with the aspect ratio and thickness ratio 
(figures 6-9). It was shown that, because of bearing friction, the appropriate tip-speed 
ratio is found from the slope of the tip-speed curve. For a given wing geometry, it was 
shown that a minimum moment-of-inertia parameter exists below which autorotation 
is impossible. For values of the moment-of-inertia parameter greater than one, the 
tip-speed ratio is nearly independent of the moment of inertia. The minimum inertial 
parameter is less in free flight than in a wind tunnel because of bearing friction. The 
variation of the tip-speed ratio €or very small values of the moment of inertia is also 
different in free flight. The reason for this is unknown but may be because variation in 
aerodynamic effects with changes in cyclic pattern is masked in a wind tunnel by 
effects of bearing friction. 

The lift coefficient of autorotating plates was shown to be a function of the aspect 
ratio, tip-speed ratio and the Reynolds number based on the plate thickness, while the 
drag coefficient, which is independent of the aspect ratio, is a function of two Reynolds 
numbers, one based on the thickness and one on the chord. For higher Reynolds 
numbers, the variation with Reynolds number becomes weaker. This trend would be 
expected to continue for Reynolds numbers higher than the range investigated. 



Autorotating flat-plate wings 347 

For practical purposes, it  would be advantageous to be able to predict the flight- 
path glide angle and speed for a given autorotating wing. If the wing were not too light, 
the glide angle, tip-speed ratio and other dimensionless parameters would be inde- 
pendent of the moment-of-inertia parameter. The glide angle would, however, still be 
a complicated function of the aspect ratio, thickness ratio and thickness and chord 
Reynolds numbers. Within the ranges of the parameters covered, the glide angle can 
be predicted from the figures in this paper. 
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